INFLUENCE OF THE LONGITUDINAL TEMPERATURE
GRADIENT ON SEPARATION IN A PLANE THERMAL
DIFFUSION COLUMN

R. Ya. Gurevich UDC 621.039.34

The problem of determining the separation coefficient of a plane diffusion column with a wall
temperature which varies along the height is solved.

We will examine the problem of thermal diffusion separation of isotopes in the liquid phase in a -
column for which

T=T(x, 2),
the axis z is directed along the column, and the axis x is directed across the gap. The thermal diffysion
process taking into account the condition of quasi-steady state is described by the equation

divj=0, (1)
where
. 7 o -
j=pvc—pD (Vc-—Fcch). 2)
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Substituting (2) into (1) and introducing simplifications, based on the condition Y > 1, W > 5
aT  d(ce) T d(cc) .

ok Do o2
thermal conductivity process), we will obtain

dc dc
oy TP 5P G T o Tax

, and paying attention that AT = 0 (the heat exchange process in the column — the

% n pDa T _a(cc) -0 | @)

On deriving equation (3) it is assumed that p, D, @ do not depend on the temperature and concentration.
As usual [1], the current of the light component towards the top of the column (with the condition that
the axis z is directed upwards) is given by the equation
3

[}
=B (j‘ 9 & (x, 2dx— X pp % dx)+oc, @
ox 5 0z
0

where @ (x, z2) = — S pvdx is what is known as the function of the flow.
[}

The value 9c/2x is determined from equation (3) by consecutive approximation. For the first ap-
proximation we will adopt the value 8c/8x for a case in which there is no longitudinal temperature gradient
in the thermal diffusion coluran and consequently u = 0.
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From [1] we have

dc 1 e o oT -
—— D e a———— @ » T CC 5
ox oD 0z + T ox ®)
Substituting the value Ezg/ax into the first term of equation (3) and integrating it with respect to the
coordinate x, assuming that cc and 8¢/5z do not depend on x, we will obtain a new value for dc/0x:
dc 1 f ) o 0T - ( ! )
e 4+ -l = e [ I+ =, (8)
ox oD oz ( T ox D

X
where f = g udx is the function of the flow in the lateral direction, if f <« D for d¢/8x we obtain the expres-
0
gion of the form (5). Expression (6) can be used for the second approximation according to the determina-
tion dc/ox etc.

In the n~th approximation the expression for 8¢/8x will have the form

ac 1 B
x L. %L e
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Substituting (6°) into (4) for T we will obtain the expression

v=He—K %+ac, 4]

A X e
K— Bf Lo z)[1+2 } dx+Bpodx.

0 0

where

H= 35{

(8

For the case of a column operating without separating, the equation for the flow in the steady state will be
- de
1=Hec — K — =0. 9
% )

As distinct from the Jones and Ferry equation here H = H(z), K = K (z).
Equation (9) is the Bernoulli equation which can be integrated by squares. For the case of a column
operating with separation we will obtain the Rikkati equation
— de
H(z)cc—K(z)T—i—cr(c,_,——c)z—«O. (10)

Z .
Thisiquation is not usually integrated by squares, as the solution can be obtained for the linear approxima-
tion cc =a + be.

We will examine the thermal diffusion plane column in which the temperature on the walls is agsigned
in the following way:

x=0, T=T,, x=06, T=T; + ke,

where k is constant.

169



Solution of the problem does not vary in principle in the case of linear variation of the temperatures
on both walls and the given system is chosen only for simplification of the calculations. The equation of
movement for a steady state case

0¥  0(AY) 0¥  9(AY) _ oy e 9T a1
oz ox Ox 0z v +he ox

where, as usually,

S,y L)
T T i o \0T I,
The energy equation
oT oT 0T 0T (
g = . 12)
0z e ox a( Ox? 622)

For the case of the thermal diffusion column used for separation of isotopes in the liquid phase
.considerable simplifications are possible in the equations of movement and energy. We will write the equa-
tion of movement in the coordinate form:

du dv 1 op v | 0%
R N/ . S 0 _ 13
0z + ox p 0z +ef +v{6x2+6zz}’ 13
ou Ou 1 ap 0u | Pu
o Mo L o [0 ] (14)
o Y PR V[ax2+azZ}
From the balance of liquid in the gap
8 ov
~— . — 15
- (15)
Taking into account (15), we will carry out an evaluation of the terms in equations (13) and (14):
ov o2 v . v v
U — A~ —— —_—~— V ——~Y —,
0z L ox 2L Ox® 52
hence
90 w3
dz 0% . ox v
T "L P e
ox* Ox?

In the case of thermal diffusion separation in the ligquid phase for columns, the characteristic magnitudes
will be [1] 6 =2.5-10™4m, L ~ 0.5m, v = 0.5-10~% m?/sec, the longitudinal component of the speed of the
convective flow in the case of ATy ~100°C, v ~ 10~ m/sec.

Substituting these values into (16), we will obtain

ov v
‘o ‘o
~ 10~ ~ 107
e 1074, T 1074,
ox* Ox®
according to the same considerations in equaﬁon (14)
o u_
fz o4 ox o,
P~ 1074 P 10
ox? 0x?
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Consequently, in equations (13) and (14) it is possible to disregard the nonlinear terms. Hence, by
introducing the stream function ¥ and eliminating from the equation the pressure term, we will write the
equation of movement in the form

vAA¥ + g 2T _ o an
ox

with the boundary conditions x =0, §: 8¥/8x = 8¥/9z = 0.

On analyzing equation (12) we will note that in the examined problem the temperature variation along
the axis z has the character of temperature nonuniformities; hence AT, = Ty, where AT,, ATy are the
maximum temperature differences along the length of the column and across the gap respectively.

We will carry out evaluation of the terms in (12), paying attention to the relationship:

or T ., 9T o, T T
oz L’ ox oL’ dx? &
hence
K oT aT
Uy — u-—
02w Ox & . a8
4 o°T al. a T 9al
ox? O0x?

Substituting the magnitudes characteristic for thermal diffusion in the liquid phase (for the liquids e = 107
to 5-10~¢ m?/h) into (18) we will obtain
aT oT
g — # —
0z N ox
o*T T
a— @
Ox* '

~ 1073,

Consequently it is possible to neglect the left hand part in equation (12) and equation (12) is transformed in-
to the thermal conductivity equation:

AT=0, (19)
The boundary conditions:
x=0, T=T,, x=06, T=T, + ka.

The solution (19) taking the boundary conditions into account will be the function
T=T,+ (m-+n2x, .
where

_Ti—T,
==t

Substituting the value T info equation (13), we will obtain the equation of movement in the form
vAAY - Bg (n <+ nz) = 0. . (20)
We will look for the solution (20), as usual, in the form
Y=g {x) -+ ¢ (x) (m -+ n2). (21)
Substituting (21) into (20) gives two equations for determining e(x) and ¢ (x):

e(x)" =0, @2)
P _ o

v PE
Y+ . (23)

171



with the boundary conditions

dp de
=0; — =0; 8)—e(0) = — . (24)
x=0, & 9=0; Ix e(8)—e(0). Bo

dx

The last condition is the condition for conservation of mass in the gap of the thermal diffusion column.
Solution of equations (22) and (23) taking into account the boundary conditions (24) gives the following expres-
sions for u and v:

vz—ﬁ‘{x(x—— g>(x—6)(m—l—nz)+ x(6—x),

6v
4= Ben x®(x — o).
24v

&Bp

In order to determine the thermal diffusion coefficients H and K from (8) we will evaluate the magnitudes
f: for 6 = 0.25 mm and the parameters of the liquid g = 1073 deg!; v = 0.5-10-2 cm®/sec; D ~10~° cm?/sec
andk =1, f =10-7, hence f/D ~ 102 « 1,

Consequently, evefx for large longitudinal gradients (k =1) f/D « 1, in equation (8)

I w1
<t

1
The function of the flow in the longitudinal direction & (x, z) will be

- ﬂgp (m+nz)[__5xs+ ]_i"_[%"z__’;i].‘ (25)

n

Substituting (25) into (8) and taking info account that E f1/D0 « 1, we will obtain
1

R
,H=H‘,[1—L————”’+;;2“° ] (26)
where
_ BPgo*(m+ n2f’ e v .
72T " H,’
) ax,d 132 )2 §° @n
7(m< n2)ox an, (m -+ nz
= s K=Ko | 1— o 9 .
K=K+ Kg K=K [ oT 5072 ]
Here

o __ Pg*0*BO® (m 4 n2f
- , Ky=BboD.
Ke T R

For the case of thermal diffusion of isotopes the terms in the square brackets (26) and (27), after unity are
much smaller than unity, and therefore, as in [1], H = Hy; Kg < Keg; K = Kg

It is seen from expressions (20) and (21) that H and K differ for our case from the transfer coef-
ficients for a column with a temperature which is constant over the height by the fact that (A T) is replaced
by (m + nz?). It is then clear that for a column operating without separation, in the steady state, we will
obtain

H
== ——-L,
4 exp<K )

where H/K will be accurately equal to H/K for a column with a constant temperature over the height, How-
ever, this means that even marked linear variation of the temperature over the height does not lead to
variation Q in an equilibrium state and, consequently, for a column operating without separation it cannot
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be the cause of deterioration of the separation coefficient. If is necessary to stress most clearly that this
conclusion is accurate only when the temperature over the width of the column is completely constant, since
in the opposite case the column can no longer be regarded as operating without separation.

For a column operating with separation, the equation of the flow
Hee — K —gi——o(ce—c) =0, (28)
7

with the condition on the boundary z = 0, ¢ = ¢,.

We will introduce the designations: H = A (m + nz)?, K =N (m + nz)? where A and N are constant, The
solution of equation (28) will be:

wexp [ L 0 N[E(Tas—e 0
Fmee (N{AbLz n(m+an)]}{NﬂA6 (m+an)2]

y 1 ___
X exp ( m [AbLz n(m+an)]) dz 4 P] ) (29)

where 0 =z =<1, The integration constant is determined from the condition z = 0; ¢ = ¢,.

The expression under the integral sign cannot be integrated to the end. An expression suitable for
calculation can be obtained for the case cc = const = a. We will note, by the way, that for the individual
column in the case of thermal diffusion separation of isotopes, this limitation does not appear rigorous.

The expression which establishes the connection between the initial ¢y, the final ¢, the concentration
and the separation o for the case cc = const = a has the form

1

L] Ys-n ©® ____'\
&‘L[g]n%_l,gz ( )
nlL - nn!

po (S mm o2 | e (&), a0

or

where ¢ = ¢/Nn; wy, =1/(m + nLz); 0=z =<1.

Since equation (30) as well as the equation for the column with a constant temperature over the height
is transcendental, then a direct explanation of the influence of the longitudinal temperature gradient on the
separation in the column is not possible. In order to illustrate this influence we will compare the operation
of the thermal diffusion column with temperatures which are constant and variable over the height. We
will carry out the comparison for temperature fields which guarantee equal discharges of energy. The
parameters of the column are L =40 cm; B = 9.4 em; AT =100°C,

In the case of a temperature which is variable over the height, we will examine two systems: a) T,
= 50°C, k = 2.5 deg/em; T = 0°C; 2) T =150°C, k = —2.5 deg/cm; T = 0°C.

For a case of constant temperature Ty =100°C, Ty = 0°C, k = 0. Bromobenzene [1] ¢’ = 0.5, ¢cg = 0.6
is taken as the initial substance.

As a result of calculation we obtain: for a temperature which is constant over the height ¢ =10 g/24
hours, for the case k = 2.5 deg/cm ¢ = 6 g/24 hours, for the casek =—2.5deg/cm ¢ = 3.8 g/24 hours.

Consequently the linear variation of the temperature over the height has a negative effect on the
operation of the thermal diffusion column in a separating system.

NOTATION

temperature, °C;

density of the mixture

coefficient of volume expansion;
coefficient of kinematic viscosity;
gravitiational acceleration;

U3 T DT 3
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u, v velocity components of convective flows;
a coefficient of thermal diffusitivity;
D concentration diffusion coefficient;

L length of the column;
] width of the gap;
o magnitude of separation,
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